
Advanced Computer Graphics
Acceleration Data Structures 

(a.k.a. Spatial Indexes)  
with Application to Raytracing et al.

G. Zachmann 
University of Bremen, Germany  

cgvr.cs.uni-bremen.de

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

"But is it real-time?"

• Ray Tracing used to be very slow (and still is slower than polygonal)

• "Perhaps, some day, graphics cards will do ray-tracing only ..." [GZ 2006]

2

U
n

i S
a
a
rb

rü
cke

n
, 2

0
0

2

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2 3Epic, Nvidia, ILM

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Motivation for Acceleration Data Structures

• Rendering animation movies

• Real-time graphics (occlusion culling, point cloud rendering, …)

• Physics simulation, in particular, collision detection

• Comparison of collision detection with and without acceleration DS:

4

No acceleration
data structure

(test all pairs of
polygons)

With acceleration
data structure
(bbox hierarchy)

20k triangles

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Fun Facts About Animation Movies

5

Movie Year
Total render

time (on 1 CPU)

Render time

per frame
#frames

Size of  
render farm

Toy Story 1995
800,000 h (91

years)

45 min – 20

hours
110,000

300 CPUs

(110 Sun's)

Toy Story 2 1999
10 min –3

days
120,000 1400 proc's

Final Fantasy 900,000 days 90 min 1200 CPUs

Big Hero 6 2014 1,000,000 h 55,000 cores

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Comparison of render times 1995 vs 2010 for Toy Story: on average 4 hours per

frame in 1995, 3 minutes in 2010.

• That is roughly a factor 100. According to Moore's Law, it should be a factor 1000. (All

assets were exactly the same, but RenderMan was upgraded)

• Facts about Big Hero 6:

• Renderer: Hyperion, global-illumination, including sub-surface scattering (BSDF's),

created by Disney

• San Fransokyo: 83,000 buildings, 260,000 trees, 215,000 streetlights and 100,000

vehicles

• The render farm sucks 1.5 MW power

• About Disney's render farm [as of 2014]: archives are currently 4 Pbytes. The

average Disney movie consumes about 4 Tbytes asset data. 1 million render hours

per day, about 400 render jobs per day.
6

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Motivation: the Costs of Ray-Tracing

• #pixels ≈ 2 million (per frame) * 24 FPS * 6000 sec (feature film)

 ≈ 300 billion pixels (x2 for stereo)

• cost per pixel ≈ # primitives tested *

 intersection cost *

 size of recursive ray tree *

 # shadow rays *

 # supersamples *

 # glossy rays *

 # temporal samples *

 # focal samples * . . .

7

Can we
decrease
that?

"Rasterization is fast, but needs cleverness to support complex visual effects.
Ray tracing supports complex visual effects, but needs cleverness to be fast."
 [David Luebke, Nvidia]

E = primary ray S = shadow
R = reflected T = transmitted

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

A Taxonomy of Acceleration Techniques

8

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Light Buffer

• Observation: when tracing shadow rays, it is sufficient to find any intersection

with an opaque object

• Idea: for each light source, and for each direction, store a list of polygons lying

in that direction when "looking" from the light source

• The data structure of the

light buffer:

the "direction cube"

• Construct either during

preprocessing (by scan

conversion onto the

cube's sides), or construct

"on demand" (i.e., insert

occluder whenever one is found)

9

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Beam and Cone Tracing

• The general idea: try to accelerate by shooting fewer, but "thick" rays

• Beam Tracing:

• Represent a "thick" ray by a pyramid

• At the surfaces of polygons, create new beams

• Cone Tracing:

• Approximate a thick ray by a cone

• Whenever necessary, split into smaller cones

• Problems:

• What is a good approximation?

• How to compute the intersection of beams/cones with polygons?

• Conclusion (at the time): too expensive!

10

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Beam Tracing

11

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Regular 3D Grids

• Approach: partition scene into 3D grid; insert objects in cells; visit all cells

along the ray; intersect ray with objects stored in cell

• Construction of the grid:

• Calculate BBox of the scene

• Choose a (suitable) grid resolution (nx, ny, nz)

• For each cell intersected by the ray:

• Is any of the objects in the cell hit by the ray?

• Yes: return closest hit

• No: proceed to next cell

12

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Precomputation

• For each cell store all objects intersecting that cell in a list with that cell⟶
"insert objects in cells"

• Each cell has a list that

contains pointers to objects

• How to insert objects:

use bbox of objects

• Exact intersection tests are

not worth the effort

• Note: most objects

are inserted in many cells

cells (not just one)

13

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Traversal of a 3D Grid

1. Approach: utilize 2 synchronized

DDA's (integer arithmetic) ⟶ 3D-DDA

• One "driving axis", two "passive axes"

2. Approach: use line parameter

• Increment all 3 t-values for intersections

with xy-, xz-, and yz-planes

• Pick the closest one

• Please review CG1 material

14

driving
axis

passive
axis 1

passive
axis 2

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Complexity of a Grid Traversal

• Assumption: grid has N cells in total (at least conceptually, even if stored as a

hash table)

• A complete ray query: could mean marching along the whole ray, cell by cell

• Worst-case time complexity:

15

<latexit sha1_base64="O6i14py6dCX+6r7K89u+RdMA1q4=">AAADAHicZVG7jhMxFHWG1xJeWaCjMQQkiiWaSQSkQYoEEluhRSK7K8VR5PHcyVrrsQc/gGBNw4dQU/FoqWmhp+RP8EwSRHavZOvo3HPfaSm4sXH8uxWdOXvu/IWti+1Ll69cvdbZvr5vlNMMxkwJpQ9TakBwCWPLrYDDUgMtUgEH6fHT2n/wBrThSr6yixKmBZ1LnnNGbaBmnSFJ+Vx5TJTmcy6pMK+1nRABudVKWT+oiCsblFR4MPX4Ba4w2cHVrNONe3Fj+DRIVqA7uvv+z/PPN/3ebLv1lWSKuQKkZYIaM0n6pZ16qi1nAqo2cQZKyo7pHHwzWIXvBSrDudLhSYsb9n/dxNl8OPVcls6CZCEAB2fuBLYK1+PijGtgViwwZSwUdtSGhOyIaspsWMtG0WJRUHtUJymDS4Vl4JowoW5RUJmZHSwUzXAKoSPAhkpT+29vJFmzYUtr2CYaJLxdZfEkpwUXiwxy6oStPDH5Gm9m4k5y+y6QhhuwrvShrQeFygA/wXk9QLhg8IbgcPxmNz4V1FVez9PKx73k4U7zJSdEGrJ/mmGQxOH1lxryzJO6ZV34rKpvnJy86Gmw3+8lj3qDl0l3tIuWtoVuoTvoPkrQYzRCu2gPjRFDH9EP9BP9ij5En6Iv0belNGqtYm6gDYu+/wU1Lvml</latexit>

O
�

3
√

N
�

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Optimal Number of Voxels

• Too many cells → slow traversal, heavy memory usage, bad cache utilization

• Too few cells → too many objects/triangles per cell

• Good rule of thumb: choose the size of the cells such that the edge length is

about the average size of the polygons/objs (e.g., measured by their bbox)

• If you don't know it (or it's too time-consuming to compute), then choose

nx, ny, nz = , N = # objects

• More precisely: resolution = ,

where ! depends on time for intersection & time for step in grid (tune at the end)

• Consequence: #cells = space complexity ∈ O(N) [good]

• Another good rule of thumb: try to make the cells cuboid-like

16

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Are You Familiar with Hash Tables?

17

https://www.menti.com/v3qk8zeeby

https://www.menti.com/v3qk8zeeby

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Practical Storage: Background Grid and Spatial Hashing

• Don't use a 3D array for storage!

• Most cells would be empty (unless you make the grid very coarse ...)

• Grid = background grid: only for generating hash values ⟶ spatial hashing

• Given point p = (px, py, pz) , e.g., lower left corner of bbox

• Convert to integers:

• Convert to hash value: concatenate into a byte-string, then compute

• Probably better: concatenate only the lower 16 bits of each of , if nx, ny, nz < 216

• Store obj ID / enumerate all obj's in hash table slot(s)

• Use any of the standard collision resolution techniques (linear, quadratic, cuckoo, ...)

18

where (Ux, Uy, Uz) = size of "universe"

<latexit sha1_base64="dMwVe3GC7FygsXs5HK5K4tCQWsI=">AAAC+HicZVLLbhMxFHWGVwmvFJZIyFAhsSjRTCSgG6RK2XRZJJJWqqPg8dxJrHrske2BBGsWfAgSO9QtX8GOLf0I/oE70wSR9kpjXZ177vNMWirpfByfd6Jr12/cvLV1u3vn7r37D3rbD8fOVFbASBhl7HHKHSipYeSlV3BcWuBFquAoPR028aOPYJ00+r1fljAp+EzLXAruEZr2hizlNpT1dEHfUo0vE5nxlCnIPVO5MsZSllsuAi2nizrQEXJqyqyczT2zLWHa24n7cWv0qpOsnJ394ZOfH8Zf/hxOtztfWWZEVYD2QnHnTpJB6SeBWy+FgrrLKgclF6d8BqHdsabPEcpojuPkRnvaov/zTiqf702C1GXlQQtMoBjMK0W9oc3mNJMWhFdLyoXAxhX3WFDMOS7n8UIbTYtlwf28KVJiyGiuaAM47FsUXGdulyrDM5oCTgTUce2a+NONImsUz7V2u8yChk+rKoHlvJBqmUHOK+XrwFy+9jcryUpLv0DQSQe+KgOO9bIwGaBqjTqNmBjFZPwP2tuEVPGqDnaW1iHuJ6922ye5RLKQ/ePsISXGb1CjoMll+a4640E/ed0fvENlD8iFbZHH5Bl5QRLyhuyTA3JIRkSQM/KL/Cbn0efoW/Q9OrugRp1VziOyYdGPvxTg9pw=</latexit>

p̄
x
= n

x
·

�

p
x

U
x

⌫

<latexit sha1_base64="U/P2Fg9Mo/rj53gRL4aIU/F/SoQ=">AAAC13icZVFNb9NAEN2YrxK+UjhyWVohihQiOxLQC1IlLj0WibRFdYjG63G66npt7UdbY1ncUK/8AP4C4gb/gjN/BjFOEyDtSLt6em/mzc5OUippXRj+6gRXrl67fmPlZvfW7Tt37/VW7+/awhuBI1GowuwnYFFJjSMnncL90iDkicK95Oh1q+8do7Gy0G9dVeI4h6mWmRTgiJr01jbiBExdNpPTPl/A6h/8wJ9OeuvhIJwFvwyiOVjfevIefv7+5ncmq50vcVoIn6N2QoG1B9GwdOMajJNCYdONvcUSxBFMsZ6N0PDHRKU8Kwwd7fiM/T/vwLtsc1xLXXqHWlABJzHziruCt4PxVBoUTlUchKDGHhwZikMwIBx9wFLTvMrBHbYmJUmFBsVbwlLfPAed2j5XBaQ8QXoRcgvatvqjJZMF2/B4AbuxQY0nc5c6ziCXqkoxA69cU8c2W+BlJ+m1dKdEWmnR+bKmZz3LixT5K561A9CuSKViWvPsb+pEgW9qM02aOhxEz/uzK7qQZDD9m7NJKSGdYUMLjS6u7zLYHQ6iF4PhG9rsNjuPFfaQrbENFrGXbIttsx02YoKdsa/sO/sRvAs+Bp+Cs/PUoDOvecCWIvj8B5GD6Ss=</latexit>

(p̄x , p̄y , p̄z)

<latexit sha1_base64="U/P2Fg9Mo/rj53gRL4aIU/F/SoQ=">AAAC13icZVFNb9NAEN2YrxK+UjhyWVohihQiOxLQC1IlLj0WibRFdYjG63G66npt7UdbY1ncUK/8AP4C4gb/gjN/BjFOEyDtSLt6em/mzc5OUippXRj+6gRXrl67fmPlZvfW7Tt37/VW7+/awhuBI1GowuwnYFFJjSMnncL90iDkicK95Oh1q+8do7Gy0G9dVeI4h6mWmRTgiJr01jbiBExdNpPTPl/A6h/8wJ9OeuvhIJwFvwyiOVjfevIefv7+5ncmq50vcVoIn6N2QoG1B9GwdOMajJNCYdONvcUSxBFMsZ6N0PDHRKU8Kwwd7fiM/T/vwLtsc1xLXXqHWlABJzHziruCt4PxVBoUTlUchKDGHhwZikMwIBx9wFLTvMrBHbYmJUmFBsVbwlLfPAed2j5XBaQ8QXoRcgvatvqjJZMF2/B4AbuxQY0nc5c6ziCXqkoxA69cU8c2W+BlJ+m1dKdEWmnR+bKmZz3LixT5K561A9CuSKViWvPsb+pEgW9qM02aOhxEz/uzK7qQZDD9m7NJKSGdYUMLjS6u7zLYHQ6iF4PhG9rsNjuPFfaQrbENFrGXbIttsx02YoKdsa/sO/sRvAs+Bp+Cs/PUoDOvecCWIvj8B5GD6Ss=</latexit>

(p̄x , p̄y , p̄z)

<latexit sha1_base64="qvqj4riUzYrBoVIEj5CmrS7FjQU=">AAAC+XicZVJLb9NAEN6YVwmPpnDkslAhihQiO1JLL0iV4NBTVSTSVorTaL0eJ6us12Yf0LDyT+HADfWExA+Ba/kxiHEeFWlHWvvT981jZ2aTUgpjw/CiEdy4eev2nbW7zXv3Hzxcb208OjKF0xx6vJCFPkmYASkU9KywEk5KDSxPJBwnk7e1fvwJtBGF+mCnJQxyNlIiE5xZpIatd+OtOGHal9XwjC7R9BJ9oS/pGzqmsVC0H7YPBjT+6FhK2/PfAYrd08mwtRl2wpnR6yBagM29F6fs198f7nC40fgapwV3OSjLJTOmH3VLO/BMW8ElVM3YGSgZn7AR+FmTFX2OVEqzQuNRls7Y//36zma7Ay9U6SwojgEUxcxJagtat05ToYFbOaWMcyzsmMWEfMw04xZHtFI0n+bMjuskJUqFYpLWhMG6ec5UatpUFjiBBPBGQA1TptafriRZshWNl7AZa1DweZHFxxnLhZymkDEnbeVjky3xaibhlLBnSBphwLrS47Ve5UUKuIGsbgC3iSoG40OYzcYnkrnK61FS+bATbbdnn+iKk4b00mcXXUI83QoXGl1d33Vw1O1EO53ue9zsPpnbGnlCnpEtEpHXZI/sk0PSI5yck9/kgvwJfPAt+B6cz12DxiLmMVmx4Oc/gN30qQ==</latexit>

h(p̄x p̄y p̄z) = h ∈ [0,N] , N = 2k

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Marginal Note: FNV-1 is a Good Hash Function

• The procedure:

• All variables must be unsigned int; str[i] must be unsigned byte

• N (= size of hash table) must be a power of 2, i.e., N = 2k

• Values for offset and prime depend on bit size of the data types:

• If unsigned int = 64 bits, then prime = 1099511628211, offset = 14695981039346656037

• If unsigned int = 32 bits, then prime = 16777619, offset = 2166136261

19

h = fnv_offset // "magic number", check literature

for i = 0 .. len(input str)-1:

 h = h * fnv_prime // resembles Linear Congruential Generator

 h = h xor str[i] // str[i] ∈ [0,255]

mask = ((1 << k) - 1) // in case k=16, mask = 0xffff

h = (h >> k) ^ (h & mask) // "xor-fold" to range of N = 2**k

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Comparison with Other Hash Functions

20

FNV-1a DJB2

Visualization of "spread" / "randomness" over hash table

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Performance

21

Input size / Bytes

#
 h

a
sh

 c
o

m
p

u
ta

ti
o

n
s

p
e
r

se
co

n
d

FNV-1 (64 bit)

xxhash (xxh3)

FNV-1 (64 bit)

xxhash (xxh3)

Input size / Bytes

#
 h

a
sh

 c
o

m
p

u
ta

ti
o

n
s

p
e
r

se
co

n
d

Throughput Latency

FYI

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Problems

• Objects could be referenced from many cells

1. Consequence: a ray-object intersection need not be the closest one (see

bottom right)

• Solution: disregard a hit, if the intersection point is outside the current cell

2. Consequence: we need a method to prevent the ray from being checked

for intersection with the same object several times (see bottom left)

22

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Mailbox Technique

• Solution: assign a mailbox with each object (e.g., just an integer instance

variable), and generate a unique ray ID for each new ray

• For the ray ID: just increment a counter in the constructor of the ray class

• After each intersection test with an object, store the ray ID in the object's

mailbox

• Before an intersection test, compare the ray ID with the ID stored in the

object's mailbox:

• IDs are equal ⟶ the intersection point can be read out from the mailbox;

• IDs are not equal ⟶ perform new ray-object intersection test, and save the result

in the mailbox (together with the ray ID)

23

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Optimization of the Mailbox Technique

• Problems with the naive method:

• Writing the mailbox invalidates the cache

• Mailbox could cause congestion when testing many rays in parallel

• Solution: store mailboxes separately from geometry

• Maintain a small hash-table with each ray, which stores object IDs

• Works, because only few objects are hit by a ray

• So, the hashtable can reside mostly in level 1 cache

• A simple hash function is sufficient

• Now, checking several rays in parallel is trivial

• Remark: this is another example of the old question, whether one should use

 "Array of Structs" (AoS) or a "Struct of Arrays" (SoA)

24

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Teapot in a Stadium Problem

• Problem: regular grids don't

adapt well to large variations of

local "densities" of the geometry

• Average object size is a bad

estimator for good cell size

25

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Possible Solutions: Hierarchical Grid or Recursive Grid

• Similar ideas

• Recursive grid: start with coarse grid,

partition "crowded" cells with further

grids inside

• Hierarchical grid: Group objects by size

(e.g. "big", "medium", "small"),

construct grid for each group (think

"layers of grids")

26

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Irregular Grids [Pérard-Gayot et al, 2017]

• Overall idea:

• Discretize universe with a background grid

(which is never explicitly constructed)

• Create partitioning of the universe by

boxes aligned to the background grid

• Similar idea: "macro regions" [Devillers 1998]

• Limitations:

• Probably only suitable for ray-tracing

(what about coll.det.?)

• Advantages:

• Allows construction and ray-tracing on the GPU (see course "Massively Parallel Algorithms")

• Suitable for static and dynamic scenes (b/c of fast construction)

27

Macro
cell

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Traversal of an Irregular Grid

• The overall algorithm:

• Remarks:

1) Point p is always exactly on the border of a cell ⟶ make sure "correct" virtual cell is identified

2) Technical details omitted here

3) Exit point: need to calc only 3 ray-plane intersections (axis-aligned planes)

28

Init p ⟵ origin of ray

repeat:

 determine next virtual grid cell containing p // (1)

 determine macro cell containing virtual grid cell // (2)

 check ray for intersection with objs in macro cell

 calculate exit point of ray wrt. current macro cell ⟶ p

until hit is found, or ray leaves universe

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Construction of Irregular Grids (Without the Details, Without GPU)

1. Construct coarse, uniform 3D grid

2. In each coarse cell: construct individual octree

• With the usual stopping criteria

• Call leaves "second-level cells"

• Maximum octree depth over all coarse cells ⟶ resolution

of virtual grid

3. Greedily merge adjacent cells of the virtual grid:

• Merge only, if raytracing costs are reduced

• Stop, when cost reduction is < threshold

29

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Cell Merging, Based on Surface Area Heuristic (SAH)

• Costs of a macro cell c:

where Ci = cost for ray-triangle intersection,

 N = number of polygons in c,

 Ct = cost for step to next macro cell

• Perform merge between cells c1 and c2, iff costs after < cost before:

i.e.

• Constraint: merged cell must be a regular AABB again

30

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Some Results

• Test scenes:

• Performance

(on the GPU!):

31

Sponza Conference Hairball Crown San Miguel

"Ours" = irregular grid, "2L Grid" = two-level grid

For "ours", a range is given, because there is a quality parameter (resolution of the
background grid) that allows to balance speed against memory usage

Build times (s)
Scene #Tris Ours 2L Grid

Sponza 262K [0.012, 0.026] 0.007
Conference 283K [0.016, 0.022] 0.007
Hairball 2.9M [0.349, 0.893] 0.177
Crown 3.5M [0.066, 0.203] 0.039
San Miguel 7.9M [0.162, 0.492] 0.071

Traversal (MRay/s) Memory (MB)
Ours 2L Grid Ours 2L Grid

[201, 653] 145 [4, 23] 24
[182, 597] 77 [4, 12] 27

[79, 148] 37 [138, 779] 668
[115, 296] 74 [53, 278] 182

[97, 291] 63 [107, 565] 323

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Ray Casting Effort per Pixel

32

U
n

if
o

rm
 G

ri
d

Low resolution Medium resolution

N
u

m
.

tr
av

e
rs

a
l
st

e
p

s
+

 i
n

te
rs

e
ct

io
n

 t
e
st

s

High resolution

Ir
re

g
u

la
r

G
ri

d

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2 33

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Proximity Clouds, a.k.a. Sphere Tracing

• Thought experiment:

• Assumption: we are sitting on the ray at point P and

we know that there is no object within a ball of radius r

around P

• Then, we can jump directly to the point

• What if we knew this "clearance" radius r

for each point in space

• Then, we could jump through space from

one point to its "clearance horizon", and so on …

• This general idea is called empty space skipping

• Comes in many different guises

34

P

X

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• The idea works with any other metric, too

• Problem: we cannot store the clearance

radius in every point in space

• Idea: discretize space by grid

• For each grid cell, store the minimum

clearance radius, i.e., the clearance radius

that works in any direction (from any point

within that cell)

➢ Such a data structure is called a

distance field

• Example:

35

3

1 1 11

2 2 22

3 3 3

3444

33

1 11

2 2

3

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

General Rules for Optimization

• "Premature Optimization is the Root of All Evil" [Knuth]

• First, implement your algorithm naïve and slow, then optimize!

• After each optimization, do a before-after benchmark!

• Sometimes, optimizations turn out to perform worse!

• Only make small optimizations, one at a time!

• Do a profiling before you optimize!

• Often, your algorithm will spend 80% of the time in quite different places than

you thought it does!

• First, try to find a smarter algorithm,

then do the "bit twiddling" optimizations!

36

Just FYI

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Octree / Quadtree

• Construction:

• Start with the bbox of the whole scene

• Subdivide a cell into 8 equal sub-cells

• Stopping criterion: the number of objects, and maximal depth

• Advantage: we can make big strides through large empty spaces

• Disadvantages:

• Relatively complex ray traversal algorithm

• Sometimes, a lot of levels are needed to discriminate objects

37

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The 5D Octree for Rays [Arvo & Kirk, 1987]

• What is a ray?

• Point + direction = 5-dim. object

• Octree over a set of rays:

• Construct bijective mapping between directions and the direction cube:

• All rays in the universe are thus "points" in the set:

• A node in the 5D octree living in R-space

= beam in 3D:

38

d

=
+

Optional

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Construction (6x):

• Associate object with an octree node ⟷ object intersects the beam

• Start with root = and the set of all objects

• Subdivide node (32 children), if

• too many objects are associated with the current node, and

• the cell is too large.

• Associate all objects with one or more children

• The ray intersection test:

• Map ray to 5D point

• Find the leaf in the 5D octree

• Intersect ray with its associated objects

• Optimizations …

39

Optional

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Remarks

• The method basically pre-computes a complete, discretized visibility for the

entire scene

• I.e., what is visible from each point in space in each direction?

• Very expensive pre-computation, very inexpensive ray traversal

• The effort is probably not balanced between pre-computation and run-time

• Very memory intensive, even with lazy evaluation

• Is used rarely in practice …

40

Optional

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

kD-Trees

• Problem with octrees:

• Very inflexible subdivision scheme (always at the center of the parent cell)

• But subdivision in all directions is not always necessary

• Solution: hierarchical subdivision that can adapt more flexibly to the

distribution of the geometry

• Idea: subdivide space/cells recursively by just one plane:

• Start with root = bbox of our universe

• Choose a plane perpendicular to one coordinate axis

• Free choices: the axis (x, y, z) & place along that axis

• "Best known method for ray-tracing" (… at least for static scenes) [Siggraph

Course 2006]

41

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Informal definition: a kd-tree is a binary tree, where

• Leaves contain single objects (polygons) or a list of at most b objects (binning)

• Inner nodes store a splitting plane (perpendicular to an axis) and child pointer(s)

• Stopping criterion:

• Maximal depth, number of objects, a cost function, …

• Advantages:

• Adaptive

• Compact nodes (just 8 bytes per node)

• Simple and very fast ray traversal

• Small disadvantage:

• Some polygons must be stored several times in the kd-tree

42

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Example

43

[Slide courtesy Martin Eisemann]

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

3D Visualization

44

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Ray-Traversal Through a KD-Tree

• Intersect ray with root-box → tmin, tmax

• Recursion:

• Update [tmin, tmax] throughout tree traversal

• Intersect ray with splitting plane → tsplit

• We need to consider the following three cases:

a) First traverse the "near", then the "far" subtree

b) Only traverse the "near" subtree

c) Only traverse the "far" subtree

45

tmax tmin

tsplit

far near

(a)

near

(b)

far

(c)

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Pseudo-Code for the Traversal of a KD-Tree Along a Ray

46

 traverse(Ray r, Node n, float t_min, float t_max):

 if n is leaf:

 intersect r with each primitive in object list,

 discard those farther away than t_max

 return object with closest intersection point (if any)

 t_split = signed distance along r to splitting plane of n

 near = child of n containing origin of r

 far = the "other" child of n

 if t_split > t_max:

 return traverse(r, near, t_min, t_max) // (b)

 else if t_split < t_min:

 return traverse(r, far, t_min, t_max) // (c)

 else: // (a)

 t_hit = traverse(r, near, t_min, t_split)

 if t_hit < t_split:

 return t_hit // early exit

 return traverse(r, far, t_split, t_max)

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Optimized Traversal for Shadow Rays

• Observation:

• 90% of all rays are shadow rays

• Any hit is sufficient

• Consequence (in case of shadow ray):

• The order the children in the kd-

tree are visited does not matter

• So, perform "stupid" DFS

• Idea: replace the recursion by an

iteration

• Augment the kd-tree by more

pointers to achieve that

47

Just FYI

1

62

3 4 5

1

62

3 4 5

1

62

3 4 5

1 2 3 4 5 6

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Algorithm

48

 straverse(Ray ray, Node root):

 stopNode = root.skipNode

 node = root

 while node < stopNode:

 if intersection between ray and node:

 if node has primitives:

 if intersection between primitive and ray:

 return intersection

 node ++

 else:

 node = node.skipNode

 return "no intersection"

Just FYI

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Construction of a kd-Tree

▪ Given:

• An axis-aligned bbox enclosing part of the scene (cell / node of the kd-tree)

• At the root, the box encloses the whole universe

• List of the geometry primitives contained in this cell

▪ The procedure (top down):

1. Choose an axis-aligned plane, with which to split the cell

2. Distribute the geometry among the two children

• Some polygons need to be assigned to both children

3. Do a recursion, until the stopping criterion is met

▪ Remark: each cell (whether leaf or inner node) defines a box, without the box ever being

explicitly stored anywhere

• (Theoretically, such boxes could be half-open boxes, if we start at the root with the complete space)

49

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

On Selecting a Splitting-Plane

• Naïve selection of the splitting plane:

• Splitting axis:

• Round Robin (x, y, z, x, y, z, …)

• Best: split along the longest axis of the node's region (not bbox of its contents!)

• Split position (along the splitting axis):

• Middle of the cell

• Median of the geometry

• In case the intended application is known: use a cost function!

• Choose a splitting plane such that the expected costs of a ray test are minimal

• Try all 3 axes: search for the minimum along each axis

• Choose axis / split position with the smallest minimum

50

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Motivation of the Cost Function

51

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Split in the middle:

• The probability of a ray hitting either child is equal

• But the expected costs for handling are very different!

52

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Split along the geometry median:

• The computational efforts for either child are equal

• But the probability of a hit are very different!

53

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Cost-optimized heuristic:

• The total expected costs are approximately similar

54

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Surface Area Heuristic (SAH)

• Question: How to measure the costs of a given kd-tree?

• Expected costs of a ray test:

• Assume, we have reached node B during the ray traversal

• Node B has children B1, B2

• Expected costs = expected traversal time =

55

B1 B2

B

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

A "Handwavy" Derivation of the Probability

• "Amount" of rays in a given direction that hit an object is

proportional to its projected area

• Total amount of rays, summed over all possible directions

= , where Ā = average of all projected areas, taken

over all possible directions

• Crofton's theorem (from integral geometry):

For convex objects, , where S = area of surface of

the object

• Therefore, the probability is

56

A

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Resolution of the "recursive" cost equation:

• How to compute C(B1) and C(B2) respectively?

• A very simple heuristic: set

• The complete Surface Area Heuristic :

minimize the following function when determining the splitting plane

(thus, distributing the set of polygons):

57

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

A Stopping Criterion During KD-Tree Construction

• How to decide whether or not a split is worth-while?

• Consider the costs of a ray intersection test in both cases:

• No split → costs =

• Optimal split → costs =

 where tp = time for one ray-primitive test

 ts = time for one intersection test of a ray with the

 splitting plane of the kd-tree node

 N = number of primitives

• Do the split iff costs of case 2 < costs of case 1

• In practice, we can make the following simplifying assumptions:

• tp = const for all primitives

• (determined by experiment, YMMV)

58

B

B1 B2

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

On Quickly Finding a Splitting Plane

• It suffices to evaluate the cost function (SAH) only at a finite set of points

along the splitting axis

• The points are the borders of the bounding boxes of the triangles

• In-between, the value of the SAH cost function must be (slightly) higher

(because split polygons contribute to both sides)

• Sort all the end-points of all bboxes along the splitting axis, evaluate the

SAH only at these points (plane sweep)

• Sorting allows for golden section search

and, thus, a faster evaluation

59

A

B

C

a0 b0 a1 b1 c0 c1

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• If the number of polygons is very large (> 500,000, say) →

only try to find the approximate minimum:

• Sort polygons into "buckets", e.g., by simple clustering

• Evaluate SAH only at the bucket borders

60

A

B
C

a0 b0 a1 b1 c0 c1

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Remarks

• Warning: for other queries (e.g. range queries, collision detection, …) the

surface area is not necessarily a good measure for the probability!

• A straight-forward, better (?) heuristic:

make a „look-ahead“

61

B11
B21

B12
B22

Diplomarbeit …

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Better KD-Trees for Raytracing

• Before applying SAH, test whether an empty cell can be split off that is

"large enough" ; if yes, do that, no SAH-based splitting

• Additional stopping criterion:

• If the volume of the cell is too small, then no further splitting

• Criterion for "too small" (e.g.): Vol(cell) < ε
. Vol(root)

• Reason: such cells probably won't get hit anyway

• Saves memory (lots) without sacrificing performance

• For architectural scenes:

• If there is a splitting plane that contains many polygons, then use that and put all

those polygons in the smaller of the two children cells

• Reason: that way, cells adapt to the rooms of the buildings (s.a. portal culling)

62

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Storage of a KD-Tree

• The data needed per node:

• One flag, whether the node is an inner node or a leaf

• If inner node: split axis (uint), split position (float), 2 pointers to children

• If leaf: number of primitives (uint), the list of primitives (one pointer)

• Naïve implementation: 16 Bytes + 1 Bit = 17 Bytes ⟶ very cache-inefficient

• Optimized implementation:

• 8 Bytes per node (!)

• Yields a speedup of 20% (some have reported even a factor of 10!)

63

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Concrete Implementation in C

• Idea of optimized storage: overlay the data

• Store all flags in just 2 bits

• Overlay flags, split-position, and number of primitives

64

flags
2

mantissa
23

exponent
8

s
1

Number of polygons
30

Inner nodes

Leaves

Both

 union

 {

 unsigned int m_flags; // both

 float m_split; // inner node

 unsigned int m_nPrims; // leaf

 };

00 = "Leaf"
 01 = "X axis"
 10 = "Y axis"
 11 = "Z axis"

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• For inner nodes: just 1 pointer to the children

• Maintain array of kd-tree nodes yourself (no malloc() nor new)

• Store both children in contiguous array elements; or

• store one child always directly after the parent.

• Overlay pointer to children with pointer to primitives

• Together:

65

 class KdNode
 {
 sprivate:
 union {
 unsigned int m_flags; // both
 float m_split; // inner node
 unsigned int m_nPrims; // leaf
 };
 union {
 unsigned int m_rightChild; // inner node
 Primitive * m_onePrim; // leaf
 Primitive ** m_primitives; // leaf
 ...

If m_nPrims == 1

If m_nPrims > 1

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Note: this showcases very well why access to instance variables ("member

variables" in C++ lingo) has to be done strictly via methods! (no direct access)

• When writing m_split , make sure that m_flags is maintained (e.g., by overwriting

the lower two bits with the original value again)!

• When reading/writing m_nPrims , don't forget to shift the value!

66

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

BoxTrees / Spatial KD-Trees (SKD-Tree) [1987/2002/2006]

• A variant of the kd-tree with potentially
overlapping child boxes

• Other names: BoxTree, "bounding interval
hierarchy" (BIH)

• Difference to the regular kd-tree:
• 2 parallel splitting planes per node

• Alternative: the 2 splitting planes can be
oriented differently

• Advantage: "straddling" polygons need not
be stored in both subtrees
• With regular kd-trees, there are usually 2N-3N

pointers to triangles, N = number of unique
triangles in the kd-tree

• Disadvantage: traversal can not stop as soon
as a hit in the "near" subtree has been found

67

L R

L R

max(L)min(R)

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Oversized Objects

• Problem:

• manchmal sind die Größen der Dreiecke sehr verschieden (z.B. Architektur-

Modelle)

• Diese erschweren das Finden von guten Splitting-Planes

• Lösung: ternärer Baum

• Aufbau:

• Vor jedem Splitting: filtere "oversized objects" heraus

• Falls viele "oversized objects": baue eigenen kd-Tree

• Sonst: einfache Liste

68

Optional

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Spatial Partitioning vs. Object Partitioning

• Spatial partitioning: acceleration data structure subdivides space, objects

(e.g., triangles) are associated afterwards to the cells

• Object partitioning: partition the set of objects, associate a bounding

volume (= subset of space) with each

• In reality, the borders between the two categories are not clear-cut!

69

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Bounding Volumes (BVs)

• Basic idea: save costs by doing precomputations on the

scene allowing for fast filtering of the rays during run-time

• Here: approximate complex, geometric objects, or sets of

objects, by some outer "hull"

70

Bounding volume
(BV)

BV is hit, but object is not hit
⟶ false positive

True positive: BV is hit,
and object is hit

True negative: BV is not hit ⟶ object is not hit
(here, there are no false negatives)

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Is it worthwhile to use BVs?

• Consider a large number of rays,

coming in from all different directions

• Then, the method does improve performance,

iff

where TBV = cost for intersection with BV,

TObj = cost for intersection with object (e.g., n polygons)

71

⇔

Average cost per ray
with BV

Average cost per ray
without BV- < 0

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Dichotomie of BVs

• Either, we try to make TBV small,

i.e., we try to make the BV "simple" (with respect to ray intersection)

• Or, we try to make large,

i.e., we try to make the BV tight

72

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Examples of Bounding Volumes

73

Box, AABB (R*-trees)
[Beckmann, Kriegel, et al., 1990]

Sphere
[Hubbard, 1996]

k-DOPs / Slabs
[Zachmann, 1998]

Spherical shell
[...]

Prism
[Barequet, et al., 1996]

OBB (oriented bounding box)
[Gottschalk, et al., 1996]

Cylinder
[Weghorst et al., 1985]

Convex hull
[Lin et. al., 2001]

Intersection of
several, other BVs

Capsule
[Larsen, 1999]

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Examples of k-DOPs

74

6-DOP

(AABB)

18-DOP

14-DOP

26-DOP

More information in the course "Virtual Reality and Simulation"

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Qualitative comparison

75

Better approximation,

higher build and intersection costs

Smaller computational costs for overlap test ,

more false positives

DOPSphere AABB k-DOP OBB convex hull

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Bounding Volume Hierarchy (BVH)

• Definition: a BVH over a set of primitives, P, is a tree where each node is

associated with

• a subset of P ; and

• a BV B, that encloses all primitives in this subset.

• Remark:

• Often, we use the BV as a synonym for the node in the BVH

• Primitives are usually stored only at leaf nodes

• Feel free to experiment; exceptions might make sense

• Usually, the set of primitives is partitioned, i.e., let Pi = the subset of primitives

associated with the node Bi, then all Pi are disjoint

• Again, feel free to experiment
76

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Schematic example:

• Parameters & variations:

• The kind of BV used

• "Arity" (degree of the nodes)

• Stopping criterion (in particular, number of triangles per leaf)

• Criterion for partitioning the primitives (guiding the construction)

77

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Examples and Visualizations of All the Boxes on a Level of a BVH

78

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2 79

Mesh AABB BVH OBB BVH

[V
it

sa
s

et
 a

l.
,

2
0

2
3

]

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2 80

Mesh AABB BVH OBB BVH

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Example for the Traversal of a BVH with a Ray

81

9

13

10

11 12

6 7 8 54

1 2 3

139

10 11

12

2

4

1

3

5

8

7

6

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Test box 13 ⟶ yes

• Test box 9 ⟶ yes

• Test obj 1 ⟶ no

• Test obj 2 ⟶ no

• Test obj 3 ⟶ yes

• Test box 10 ⟶ yes, but intersection point is farther away

➢Result: only 3 instead of 8 tests with objects, plus 3 tests with BVs

• Question: why did we start with BV 9?

82

9

13

10

11 12

6 7 8 54

1 2 3

139

10 11

12

2

4

1

3

5

8

7

6

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

A Better Hierarchy Traversal

• Problem: the order by which nodes are visited with pure depth-first search

(DFS) depends only on the topology of the tree

• Better: consider the spatial layout of the BV's, too

• Criterion: distance between origin of ray and intersection with BV (= lower

bound on distance of enclosed primitives)

• Consequence: should not use simple recursion / stack any more

• Use priority queue

83

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Algorithm

• Maintain a p-queue

• Contains all BVs (= BVH nodes) that still need to be visited

• Sorted by their distance from ray origin (along ray)

84

Pqueue q ⟵ init with root

closest_hit = ∞

while q not empty:

 node ⟵ extract front from q // = nearest BV

 if dist(node) <= closest_hit: // else: skip this subtree

 if node is leaf:

 intersect ray with all polygons in node

 update closest_hit, if any polygon is closer

 else // inner node

 forall children of node:

 if ray intersects child:

 insert child in q with its distance

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Example

• Insert root

• Pop front of queue ⟶ 13

• Test with 9 ⟶ no

• Test with 10 ⟶ yes, insert

• Pop front of queue ⟶ 10

• Test with 11 ⟶ yes

• Test with 12 ⟶ yes

• Pop front ⟶ 12

• Test with 4 à yes, save hit

• Test with 5 à yes, closer ⟶ save hit

85

139

10 11

12

2

4

1

3

5
8

7

6

9

13

10

11 12

6 7 8 54

1 2 3

13

10

12 11

11

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Remarks

• Observation: we don't need a complete ordering among the BV's in the

priority queue, because in each step, we only need to extract the BV that

has the closest intersection (among all others in the queue)

• Efficient implementation of a p-queue:

• Insertion of an element, and extracting the front ⟶

(where k = #elements in the p-queue)

• Warning: the closest

ray-BV intersection

and the closest ray-primitive

intersection can occur

in different BV's!

86

O(log k)

heap

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Complexity of BVH Traversal Along a Ray

• Assumptions (rather strong):

• On each level in the BVH, all pairs of BV's are intersection-free

• During construction, the polygon list is always partitioned at the median

• One BVH traversal for a single ray query: O(log n)

• More precisely:

87

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Performance Gain?

88

spheres 10 91 820 7381 66430

Brute-force 2.5 11.4 115.0 2677.0 24891.0

With BVH 2.3 2.8 4.1 5.5 7.4

Rendering times in seconds, Athlon XP 1900+ [Markus Geimer]

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Performance Comparison AABB vs OBB Hierarchy for Raytracing

89

AABB hierarchy OBB hierarchy

Number of BV intersections during BVH traversal for the primary ray

Note that a single BV-ray intersection calculation is more expensive for OBB's

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Construction of BV Hierarchies

• There are many possible principles:

1. Given by modeling process (e.g., in form of a scene graph)

2. Bottom-up:

• Recursively combine objects/BV's and enclose in (larger) BV

• Problem: how to choose the objects/BV's to be combined?

3. Iterative Insert:

• Start with empty tree, iteratively add polygons, let each polygon "sift" through
the tree [Goldsmith/Salmon]

4. Top-down:

• Partition the set of primitives recursively

• Problem: how to partition the set?

90

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Example for the Top-Down Construction of a BVH

• Enclose each object (= primitives) by an elementary BV (e.g., AABB)

• In the following, work only with those elementary BVs

• Partition the set of objects in two sub-sets

• Recurse

91

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

Simplest Heuristic for Partitioning: Median Cut

1. Construct elementary BVs around all objects

2. Sort all objects according to their "center" along

the x-axis

3. Partition the scene along the median on the x-axis;

assign half of the objects to the left and the right sub-

tree, resp.

1. Variant: cyclically choose a different axis on each level

2. Variant: choose the axis with the longest extent

4. Repeat 1-3 recursively

• Terminate, when a node contains less than n objects

92

Optional

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

A Better BVH Construction Method

• Given a set of polygons, what is their optimal partitioning? (optimal with

respect to raytracing performance)

• Use the Surface Area Heuristic (SAH):

partition polygon set B into subsets B1 and B2 such that

attains its minimum

• Optimum could be achieved by exhaustive search: consider all possible

subsets and

• Not practical

• Current "best" way: use a method similar to kd-tree construction

93

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

The Plane Sweep Method to Construct Good BVHs

1. Represent all polygons by their midpoints

2. Calculate axis of largest extent (using PCA)

3. Project all midpoints onto that axis and sort

4. Search minimum of C(B) by plane sweep

94

G. Zachmann Acceleration Data StructuresSS April 2024Computer Graphics 2

• Running time:

where " is the proportion of polygons that end up in the "left" child BV,

and assuming " is bounded (e.g., between 0.1 and 0.9)

• Remarks:

• Stopping criteria are the same as for the kd-tree

• Top-down methods usually lead to better BVHs than iterative ones

95

